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Abstract
Quantum engineering of electronic energy states using nanoscale layers of
semiconductor compounds allows the design and the observation of quantum
phenomena which are typically observed in atomic structures. Furthermore,
semiconductors are present in nearly all modern electronic devices and are
a crucial component of integrated circuits. Due to the relatively high rate
of manufacturing defects, it is crucial to have a method for testing new
semiconductor formations without requiring a sample to be fabricated. A
simple, fast and very accurate numerical technique is presented to calculate
the eigenstates of such arbitrary quantum structures. The method is based on
a high-order finite difference scheme which allows the use of sparse matrix
algebra, thus, significantly reducing computational time and allowing for high
precision results even for the high energy states.

PACS numbers: 02.70.Bf, 03.65.Ge, 81.07.Bc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Schrödinger equation plays a fundamental role in physics and in particular in quantum
mechanics. It describes the quantum states of a physical system and as such it is as central
to quantum mechanics as Newton’s laws are to classical mechanics. In its time-independent
form, the equation is a second-order, linear eigenvalue problem which until today has not been
solved exactly for many physical systems. Even when an analytic solution is available, the
resulting algebraic equations for the eigenvalues often involve complicated functions (ranging
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from trigonometric to Airy) whose roots must be calculated numerically, thus making the use
of numerical techniques unavoidable.

Important modern applications are based on this equation. For example, semiconductors
are present in nearly all modern electronic devices and are a crucial component of integrated
circuits. Because of their widespread use, it has become desirable to be able to create
semiconductor material with highly specific conduction properties. For this purpose, many
different materials are used in the fabrication of semiconductors. Additionally, the conduction
properties of a material can be altered through doping, where impurities are introduced into a
purified host material in a specific pattern. Doping can occur uniformly throughout an entire
semiconductor to alter its overall properties, or in specific areas to define circuit elements within
the material. The doping impurities may be dispersed as sparsely as 1 atom per 108 atoms of
substrate, requiring sophisticated instruments to accurately dope the material. Because of this,
and the relatively high rate of manufacturing defects, it is crucial to have a method for testing
new semiconductor formations without requiring a sample to be fabricated. The behavior of a
doped semiconductor can be examined mathematically using the Schrödinger equation under
the effective mass approximation [1] (see equation (1) below).

The most common approaches on the subject are finite element analysis [2, 3], the transfer
matrix method [4, 5], variational [6] and shooting methods [7]. An iterative technique was
presented in [8] and recently, a spectral grid method was introduced in [9]. A method for
an interaction potential of general shape can be found in [10]. However, these methods need
to be significantly modified if the potential profile changes, or need additional techniques to
improve their accuracy. For example, none of the above cases consider asymmetric potentials
or multiple potentials with all parameters of the problem discontinuous or singular across
interfaces.

The first successful attempt to provide a method that takes into account all possible
discontinuities was made in [11]. The basis of that method is the immersed interface
method (IIM), first introduced in [12]. In its original formulation, the IIM is a second-order
finite difference method that can be used to solve differential equations with discontinuous
coefficients and singular sources. The main features of this method, that give it an immediate
advantage over others, are that it requires no alternation for different types of potentials; the
potential needs not be symmetric, it can be discontinuous and even singular in terms of delta
functions. We give here its higher order generalization.

Our analysis is focused on the one-dimensional time-independent Schrödinger equation
under the effective mass approximation, which in normalized form is given by

− 1

π2

d

dx

(
1

m∗
dψ

dx

)
+ V (x)ψ = εψ (1)

with normalized parameters x = z/d, V = U/E0,m
∗ = me/me(0), ε = E/E0 and

E0 = h̄2π2/2me(0)d2, where me(x) is the effective mass of the particle, me(0) the effective
mass of the particle at the origin, d is the dimensional width of the well, V (x) the potential
and E the energy of the particle. As usual 2πh̄ is Planck’s constant. The potential V (x) is an
arbitrary function of x and is bounded by semi-infinite flat barriers.

2. Formulation

To demonstrate the numerical scheme, we consider the Schrödinger equation in the form

− 1

π2m∗

d2ψ

dx2
+ V (x)ψ = εψ,

2
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Figure 1. The uniform grid, the irregular points (longer solid lines) and the interface (longer
dashed lines).

where all variables appear in nondimensional form and −∞ < x < ∞. Note that the choice
of the equation causes no restriction in the implementation, efficiency or accuracy of the
method; any linear, second-order equation can be treated in the same manner. To complete the
boundary value problem we impose the boundary conditions ψ(±∞) = 0 (see the appendix
for further details on the boundary conditions). Furthermore, the mass of the particle is taken
to be piecewise constant, hence, can be taken outside the derivative and any contributions
from discontinuities will be incorporated in the numerical scheme below using appropriate
matching conditions at the interfaces, where these discontinuities occur.

Define M = M(x) = 1/π2m∗ to further simplify the equation to

−Mψxx + V (x)ψ = εψ, (2)

where the subscripts denote differentiation. The function M = M(x) is a piecewise constant
and can be allowed to have a discontinuity at, say, x = x∗. For simplicity, and without
loss of generality, we also assume that the potential V (x) may also have a jump at x = x∗.
The equation is numerically integrated over a uniform grid in the interval [x0, xN ] with
xi = x0 + hi, i = 0, 1, 2, . . . , N − 1, where h = (b − a)/(N − 1). The point x∗ will naturally
fall between two grid points, say xj � x∗ < xj+1, as shown in figure 1. If the interface should
happen to fall on a grid point that is taken to be x∗ = xj . The goal is to develop a finite
difference approximation of the form

σ1ψi−2 + σ2ψi−1 + σ3ψi + σ4ψi+1 + σ5ψi+2 = εψi, i = 1, 2, . . . , N − 1 (3)

that can be used together with the boundary conditions to obtain a fourth-order accurate
approximation to ψ(x). The points for which i = j − 1, j, j + 1, j + 2, are called irregular
since the differencing scheme, equation (3), is not satisfied (the interface is between two grid
points, see figure 1). All other points are called regular. If the interface is not present the
usual definition for σ ’s apply, namely

σ1 = σ5 = M(xi)

12h2
, σ2 = σ4 = −4M(xi)

3h2
, σ3 = 5M(xi)

2h2
+ V (xi)

which, also applies to all regular points. Essentially our goal is to determine the values of σ ’s
for all irregular points, so that fourth-order accuracy is maintained.

To do this we expand ψ(xi) = ψi, i = j − 1, j, j + 1, j + 2, in a Taylor series around the
point x = x∗. Hereafter, the values of all function defined on the left of the interface (the (–)
region) will be denoted with a – superscript, whereas the functions defined on the right (the

3
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(+) region) will be denoted with a + superscript, namely ψ− and ψ+. Then

ψ(xj−1) = ψj−1 = ψ− + (xj−1 − x∗)ψ−
x + 1

2 (xj−1 − x∗)2ψ−
xx

+ 1
6 (xj−1 − x∗)3ψ−

xxx + 1
24 (xj−1 − x∗)4ψ−

xxxx, (4a)

ψ(xj ) = ψj = ψ− + (xj − x∗)ψ−
x + 1

2 (xj − x∗)2ψ−
xx

+ 1
6 (xj − x∗)3ψ−

xxx + 1
24 (xj − x∗)4ψ−

xxxx, (4b)

ψ(xj+1) = ψj+1 = ψ+ + (xj+1 − x∗)ψ+
x + 1

2 (xj+1 − x∗)2ψ+
xx

+ 1
6 (xj+1 − x∗)3ψ+

xxx + 1
24 (xj+1 − x∗)4ψ+

xxxx, (4c)

ψ(xj+2) = ψj+2 = ψ+ + (xj+2 − x∗)ψ+
x + 1

2 (xj+2 − x∗)2ψ+
xx

+ 1
6 (xj+2 − x∗)3ψ+

xxx + 1
24 (xj+2 − x∗)4ψ+

xxxx . (4d)

The right-hand side of equation (3) is expanded as follows:

εψj = ε

[
ψ− + (xj − x∗)ψ−

x +
1

2
(xj − x∗)2ψ−

xx

]
= (−M−ψ−

xx + V −ψ−)
+ (xj − x∗)

(−M−ψ−
xxx + V −

x ψ− + V −ψ−
x

)
+

1

2
(xj − x∗)2

(−M−ψ−
xxxx + V −

xxψ
− + 2V −

x ψ−
x + V −ψ−

xx

)
= ψ−

[
V − + (xj − x∗)V −

x +
1

2
(xj − x∗)2V −

xx

]
+ ψ−

x

[
(xj − x∗)V − + (xj − x∗)2V −

x

]
+ ψ−

xx

[
−M− +

1

2
(xj − x∗)2V −

]
+ ψ−

xxx[−M−(xj − x∗)]

+ ψxxxx

[
−M−

2
(xj − x∗)2

]
, (5)

where equation (2) and its first and second derivatives have been used. Next we substitute
equations (2) and (5) into equation (3) and match relative terms of ψ and its derivatives from
both sides of the resulting equation. Note, however, that equations (4c) and (4d) involve the
values of ψ (and its derivatives) evaluated at the (+) region. We therefore need relations to
connect the functions and their relative values in the two regions. These relations we call jump
conditions. The first condition is the continuity of ψ , namely

ψ+ = ψ− = ψ.

The second comes from integrating equation (1) around the interface, namely

lim
�x→0

∫ x∗+�x

x∗−�x

(
− 1

π2

d

dx

(
1

m∗
dψ

dx

)
+ V (x)ψ

)
dx = ε lim

�x→0

∫ x∗+�x

x∗−�x

ψ dx.

Since ψ is continuous across the interface the second relation becomes

ψ+
x = M−

M+
ψ−

x .

Using the above jump conditions and differentiating the equation twice we obtain the remaining
jumps, on the second derivative (εψ− = εψ+)

ψ+
xx = ψ−

xx

M−

M+
+ ψ

V + − V −

M+

4
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the third derivative

ψ+
xxx = ψ−

xxx

(
M−

M+

)2

+ ψ−
x

[
M−

M+2 (V + − V −)

]
+ ψ

[
V +

x

M+
− M−

M+2 V −
x

]

and the fourth derivative

ψ+
xxxx = ψ−

xxxx

(
M−

M+

)2

+ ψ−
xx

[
2

M−

M+2 (V + − V −)

]
+ ψ−

x

[
2

M−

M+2 (V +
x − V −

x )

]

+ ψ

[
−M−

M+2 V −
xx +

V +
xx

M+
+

(
V + − V −

M+

)2
]

.

Finally replacing these values and matching relevant terms we obtain for ψ

σ1 + σ2 + σ3 + σ4

[
1 +

V + − V −

2M+
(xj+1 − x∗)2 +

1

6

(
−M−V −

x

M+2 +
V +

x

M+

)
(xj+1 − x∗)3

+
1

24

(
(V − − V +)2

M+2 − M−

M+2 V −
xx +

1

M+
V +

xx

)
(xj+1 − x∗)4

]

+ σ5

[
1 +

V + − V −

2M+
(xj+2 − x∗)2 +

1

6

(
−M−V −

x

M+2 +
V +

x

M+

)
(xj+2 − x∗)3

+
1

24

(
(V − − V +)2

M+2 − M−

M+2 V −
xx +

1

M+
V +

xx

)
(xj+2 − x∗)4

]

= V − + (xj − x∗)V −
x +

1

2
(xj − x∗)2V −

xx

for ψ−
x

σ1(xj−2 − x∗) + σ2(xj−1 − x∗) + σ3(xj − x∗)

+σ4

[
(xj+1 − x∗)

M−

M+
+

1

6
(xj+1 − x∗)3 M−

M+2 (V + − V −)

+
1

24
(xj+1 − x∗)4 M−

M+2 2
(
V +

x − V −
x

)]

+ σ5

[
(xj+2 − x∗)

M−

M+
+

1

6
(xj+2 − x∗)3 M−

M+2 (V + − V −)

+
1

24
(xj+2 − x∗)4 M−

M+2 2
(
V +

x − V −
x

)] = (xj − x∗)V − + (xj − x∗)2V −
x

for ψ−
xx

σ1
1

2
(xj−2 − x∗)2 + σ2

1

2
(xj−1 − x∗)2 + σ3

1

2
(xj − x∗)2

+σ4

[
1

2
(xj+1 − x∗)2 M−

M+
+

1

24
(xj+1 − x∗)4 M−

M+2 2(V + − V −)

]

+σ5

[
1

2
(xj+2 − x∗)2 M−

M+
+

1

24
(xj+2 − x∗)4 M−

M+2 2(V + − V −)

]

= − M− +
1

2
(xj − x∗)2V −

5
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for ψ−
xxx

σ1
1

6
(xj−2 − x∗)3 + σ2

1

6
(xj−1 − x∗)3 + σ3

1

6
(xj − x∗)3 + σ4

[
1

6
(xj+1 − x∗)3

(
M−

M+

)2
]

+ σ5

[
1

6
(xj+2 − x∗)3

(
M−

M+

)2
]

= −M−(xj − x∗)

and for ψ−
xxxx

σ1
1

24
(xj−2 − x∗)4 + σ2

1

24
(xj−1 − x∗)4 + σ3

1

24
(xj − x∗)4 + σ4

[
1

24
(xj+1 − x∗)4

(
M−

M+

)2
]

+ σ5

[
1

24
(xj+2 − x∗)4

(
M−

M+

)2
]

= −M−

2
(xj − x∗)2.

The above equations form a 5×5 linear system with unknowns of finite difference coefficients
σ ’s. The solution of this system provides the appropriate fourth-order corrections for equation
(3) at the point xj .

In a similar manner we obtain the systems at xj−1,

σ1 + σ2 + σ3 + σ4 + σ5

[
1 +

V + − V −

2M+
(xj+1 − x∗)2 +

1

6

(
−M−V −

x

M+2 +
V +

x

M+

)
(xj+1 − x∗)3

+
1

24

(
(V − − V +)2

M+2 − M−

M+2 V −
xx +

1

M+
V +

xx

)
(xj+1 − x∗)4

]

= V − + (xj−1 − x∗)V −
x +

1

2
(xj−1 − x∗)2V −

xx,

σ1(xj−3 − x∗) + σ2(xj−2 − x∗) + σ3(xj−1 − x∗) + σ4(xj − x∗)

+ σ5

[
(xj+1 − x∗)

M−

M+
+

1

6
(xj+1 − x∗)3 M−

M+2 (V + − V −)

+
1

24
(xj+1 − x∗)4 M−

M+2 2(V +
x − V −

x )

]
= (xj−1 − x∗)V − + (xj−1 − x∗)2V −

x ,

σ1
1

2
(xj−3 − x∗)2 + σ2

1

2
(xj−2 − x∗)2 + σ3

1

2
(xj−1 − x∗)2 + σ4

1

2
(xj − x∗)2

+ σ5

[
1

2
(xj+1 − x∗)2 M−

M+
+

1

24
(xj+1 − x∗)4 M−

M+2 2(V + − V −)

]

= − M− +
1

2
(xj−1 − x∗)2V −,

σ1
1

6
(xj−3 − x∗)3 + σ2

1

6
(xj−2 − x∗)3 + σ3

1

6
(xj−1 − x∗)3 + σ4

1

6
(xj − x∗)3

+ σ5

[
1

6
(xj+1 − x∗)3

(
M−

M+

)2
]

= −M−(xj−1 − x∗),

σ1
1

24
(xj−3 − x∗)4 + σ2

1

24
(xj−2 − x∗)4 + σ3

1

24
(xj−1 − x∗)4 + σ4

1

24
(xj − x∗)4

+ σ5

[
1

24
(xj+1 − x∗)4

(
M−

M+

)2
]

= −M−

2
(xj−1 − x∗)2

6
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at xj+1,

σ1

[
1 +

V − − V +

2M− (xj−1 − x∗)2 +
1

6

(
−M+V +

x

M−2 +
V −

x

M−

)
(xj−1 − x∗)3

+
1

24

(
(V + − V −)2

M−2 − M+

M−2 V +
xx +

1

M− V −
xx

)
(xj−1 − x∗)4

]

+ σ2

[
1 +

V − − V +

2M− (xj − x∗)2 +
1

6

(
−M+V +

x

M−2 +
V −

x

M−

)
(xj − x∗)3

]

+
1

24

(
(V + − V −)2

M−2 − M+

M−2 V +
xx +

1

M− V −
xx

)
(xj − x∗)4

]

+ σ3 + σ4 + σ5 = V + + (xj+1 − x∗)V +
x +

1

2
(xj+1 − x∗)2V +

xx,

σ1

[
(xj−1 − x∗)

M+

M− +
1

6
(xj−1 − x∗)3 M+

M−2 (V − − V +) +
1

24
(xj−1 − x∗)4 M+

M−2 2
(
V −

x − V +
x

)]

+ σ2

[
(xj − x∗)

M+

M− +
1

6
(xj − x∗)3 M+

M−2 (V − − V +)

+
1

24
(xj − x∗)4 M+

M−2 2
(
V −

x − V +
x

)]
+ σ3(xj+1 − x∗) + σ4(xj+2 − x∗)

+ σ5(xj+3 − x∗) = (xj+1 − x∗)V + + (xj+1 − x∗)2V +
x ,

σ1

[
1

2
(xj−1 − x∗)2 M+

M− +
1

24
(xj−1 − x∗)4 M+

M−2 2(V − − V +)

]

+ σ2

[
1

2
(xj − x∗)2 M+

M− +
1

24
(xj − x∗)4 M+

M−2 2(V − − V +)

]

+ σ3
1

2
(xj+1 − x∗)2 + σ4

1

2
(xj+2 − x∗)2 + σ5

1

2
(xj+3 − x∗)2

= − M+ +
1

2
(xj+1 − x∗)2V +,

σ1

[
1

6
(xj−1 − x∗)3

(
M+

M−

)2
]

+ σ2

[
1

6
(xj − x∗)3

(
M+

M−

)2
]

+ σ3
1

6
(xj+1 − x∗)3 + σ4

1

6
(xj+2 − x∗)3 + σ5

1

6
(xj+3 − x∗)3 = −M+(xj+1 − x∗),

σ1

[
1

24
(xj−1 − x∗)4

(
M+

M−

)2
]

+ σ2

[
1

24
(xj − x∗)4

(
M+

M−

)2
]

+ σ3
1

24
(xj+1 − x∗)4

+ σ4
1

24
(xj+2 − x∗)4 + σ5

1

24
(xj+3 − x∗)4 = −M+

2
(xj+1 − x∗)2,

and xj+2

σ1

[
1 +

V − − V +

2M− (xj − x∗)2 +
1

6

(
−M+V +

x

M−2 +
V −

x

M−

)
(xj − x∗)3

+
1

24

(
(V + − V −)2

M−2 − M+

M−2 V +
xx +

1

M− V −
xx

)
(xj − x∗)4

]

+ σ2 + σ3 + σ4 + σ5 = V + + (xj+2 − x∗)V +
x +

1

2
(xj+2 − x∗)2V +

xx,

7
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σ1

[
(xj − x∗)

M+

M− +
1

6
(xj − x∗)3 M+

M−2 (V − − V +) +
1

24
(xj − x∗)4 M+

M−2 2
(
V −

x − V +
x

)]
+ σ2(xj+1 − x∗) + σ3(xj+2 − x∗) + σ4(xj+3 − x∗) + σ5(xj+4 − x∗)

= (xj+2 − x∗)V + + (xj+2 − x∗)2V +
x ,

σ1

[
1

2
(xj − x∗)2 M+

M− +
1

24
(xj − x∗)4 M+

M−2 2(V − − V +)

]
+ σ2

1

2
(xj+1 − x∗)2 + σ3

1

2
(xj+2 − x∗)2

+ σ4
1

2
(xj+3 − x∗)2 + σ5

1

2
(xj+4 − x∗)2 = −M+ +

1

2
(xj+2 − x∗)2V +,

σ1

[
1

6
(xj − x∗)3

(
M+

M−

)2
]

+ σ2
1

6
(xj+1 − x∗)3 + σ3

1

6
(xj+2 − x∗)3 + σ4

1

6
(xj+3 − x∗)3

+ σ5
1

6
(xj+4 − x∗)3 = −M+(xj+2 − x∗),

σ1

[
1

24
(xj − x∗)4

(
M+

M−

)2
]

+ σ2
1

24
(xj+1 − x∗)4 + σ3

1

24
(xj+2 − x∗)4 + σ4

1

24
(xj+3 − x∗)4

+ σ5
1

24
(xj+4 − x∗)4 = −M+

2
(xj+2 − x∗)2.

Note that for the last two systems, at xj+1 and xj+2 the values on the (–) region are substituted
with appropriate jump conditions on the (+) region.

The solutions of the above systems complete the difference equation (3) for all points xi

and any possible discontinuities at x∗ are now included in the finite difference coefficients.
The systems are the same for all interfaces, with appropriate changes in the coefficients, for
the location of x∗, allowing one to analyze multiple quantum wells without having to change
the formalism. More importantly, discontinuities for all functions are allowed, the matrix
remains sparse, and the resulting method remains O(h4). Note finally, that the general form of
the potential is irrelevant for the above corrections. The discretization of the potential affects
only the general form of the coefficients and only its values before and after x∗ contribute to
the systems above. This is another aspect that makes the method so efficient and capable of
handling truly arbitrary potential profiles.

In the following sections, we numerically solve equation (1) not only for a variety of
physically important potentials, but for artificially constructed ones that demonstrate the
efficiency of our method.

3. Single potentials

In most cases of single potentials in the literature, constant or truncated parabolic potentials
have been considered. To demonstrate the accuracy and convergence of our method we turn to
another potential, which still possesses an exact solution and is somehow less trivial to solve.
The delta potential is a common theoretical problem of quantum mechanics. It consists of the
time-independent Schrödinger equation for a particle in a potential well defined by a Dirac
delta function in one dimension. The delta function potential well is a special case of the finite
potential well, and follows as a limit as the depth goes to infinity and the width goes to zero,
keeping their product constant. The exact solution is of the form exp(−|x|) which suggests a
jump in its derivatives at x = 0, making it the first test case for our method.

For simplicity take equation (1) in the form

d2ψ

dx2
− 2δ(x)ψ = −2εψ. (6)
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Figure 2. Exact and numerical solution of the Schrödinger equation for the delta potential.

Table 1. The energy for a delta potential with second and fourth-order accuracy.

Number of points Second-order results Fourth-order results

500 −0.500 031 23 −0.500 000 130
1 000 −0.500 003 95 −0.500 000 009 58
2 000 −0.500 000 497 −0.500 000 000 645
5 000 −0.500 000 0319 −0.500 000 000 0177

10 000 −0.500 000 003 99 −0.500 000 000 0000

The exact solution of the equation is ψ(x) = A exp(−|x|) and the corresponding eigenenergy
is ε = −1/2. To apply the above method one needs only to make a minor adjustment in the
jump condition of the first derivative. Indeed, integrating equation (6) around x = x∗ = 0 one
gets ψ+

x − ψ−
x = 2ψ , since as before ψ+ = ψ− = ψ . The remaining steps are used with no

alterations. In figure 2 we plot the exact solution and the solution as obtained from our method,
normalized so that ψ(0) = 1. In table 1 we show the convergence of the second and higher
order methods. Note that the usual rule for significant digits is not followed for a reason: to
demonstrate the accuracy and convergence of the two approaches. Every time we increase the
number of points we show three additional digits. Results are clearly in excellent agreement
with the expected value for the eigenenergy. The second-order method is summarized in the
appendix.

Next we proceed to consider arbitrary shaped potentials. The first case is taken from
[8] and concerns a linearly graded well with width 100 Å, height 0.48 eV and composition
grading 0.2 eV. The first three energy states and the corresponding density functions are shown
in figure 3. The well consists of Al0.33Ga0.67As surrounded by GaAs barriers.

In in-well doped single quantum wells, ionized donors and free electrons exist together
in the quantum well, so cancellation of the charges occurs. This charge screening effect
suppresses band bending outside of the quantum well, even in high donor densities. As a result
of the cancellation between the interactive force from ionized donors and the repulsive force
among the free electrons themselves, the change in the distribution of the free electrons is fairly
well suppressed. For more on the physical importance of these wells one can see [6]. Take

9
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Figure 3. Eigenstates of the linearly graded quantum well described in the text.
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Figure 4. Eigenstates of the in-well doped single well described in the text.

again, the well to be 100 Å wide consisting of Al0.33Ga0.67As surrounded by GaAs barriers.
The shape of the well is described by the barrier Vout = 166/E0 exp(−1/(16x)2 +1/64) and the
inside well Vin = 1/4 sin(3.4πx)/(3.4πx). Figure 4 shows the eigenvalues and normalized
eigenfunctions for the first two states.

To conclude this section we examine a truly arbitrary potential. As stated above,
single parabolic potentials have been extensively analyzed and will not be considered
here, since the only jump they exhibit is on the mass. Instead we construct a well by
replacing half of a parabolic potential with an exponential potential [11], of the form
V (x) = V0 exp(−1/(16x)2 + 1/64), 0 < x < 1/2, making the total potential profile
asymmetric. This potential may have minor physical importance but demonstrates the
efficiency of our method. The results for this potential are shown in figure 5. If the total
potential was simply the exponential there would exist only the ground state, however, the
asymmetry, namely the addition of the parabolic potential allows for a second eigenstate.
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Figure 5. Eigenstates of an asymmetric parabolic-exponential potential.

Also, since the potential is narrowed in width due to the asymmetry there now exist only two
eigenstates. Again these differences arise from the broken symmetry. The potential of figure 5
exhibits features from both parts of the (symmetric) potential (parabolic and super-potential)
that it is constructed from, as expected.

4. Multiple potentials

Superlattice structures have been used in field effect transistors where several quantum wells
provide parallel conducting channels, increasing the device current carrying capabilities and,
hence, the output power. In heterostructure devices, superlattice buffers are used to create an
intermediate layer between a substrate and an active layer. This allows us to alleviate strain
caused by lattice constant mismatch and to obtain a much better quality active layer material.
The addition of multiple potentials in equation (1) changes significantly its properties and
dramatically increases the difficulty of finding an exact solution. Indeed, even for constant
potentials the exact closed-form solution for the eigenvalue is an algebraic equation which has
to be solve numerically. Hence, if the spectrum of single potentials for which the equation
exhibits exact solutions is narrow the relative spectrum for multiple potentials is almost
nonexisting making the use of numerical techniques a necessity.

To start our analysis and demonstrate the convergence and accuracy of the method we
consider a series of truncated parabolic potentials, as in [11]. In figure 6 we plot the ground
state and the first two excited states. In table 2 we show the convergence of the second (see
appendix) and higher order methods.

One of the most interesting applications of superlattices is the quantum cascade laser [13].
Quantum cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to far-infrared
portion of the electromagnetic spectrum. Unlike typical interband semiconductor lasers that
emit electromagnetic radiation through the recombination of electron-hole pairs across the
material band gap, QCLs are unipolar and laser emission is achieved through the use of
intersubband transitions in a repeated stack of semiconductor superlattices. To resemble such
lattices we construct a potential after [14, 15]. The corresponding eigenstates are shown in
figure 7.
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Figure 6. Eigenstates of a series of symmetric truncated parabolic potentials.
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Figure 7. Eigenstates of the constructed superlattice in the text.

Table 2. The energy of a series of symmetric truncated parabolic potentials using second and
fourth accurate methods.

Number of points Second-order results Fourth-order results

500 75.099 306 76 74.853 667 09
1 000 74.435 367 96 74.263 543 84
2 000 74.265 161 91 74.212 237 67
4 000 74.222 525 30 74.208 558 41
8 000 74.211 895 17 74.208 312 09

16 000 74.209 189 15 74.208 296 27
32 000 74.208 518 20 74.208 295 27
64 000 74.208 351 56 74.208 295 27
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Figure 8. Eigenstates of an asymmetric potential.
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Figure 9. Eigenstates of a general multi-well potential.

Laser diodes and amplifiers based on asymmetric quantum-well heterostructures are also
of importance [16]. In contrast to ordinary laser heterostructures, for such modified quantum-
well systems, it is possible to change the gain spectrum in a wide range and to control the
set of definite amplification frequencies by selecting the width and component composition
of quantum wells and barrier regions. For the asymmetric potential of [16], namely width
of 50-40-30 (well, barrier, well) in Å, the only existing states are shown in figure 8. As
expected the break in the symmetry of the potentials results in the lift of any degeneracy in
the eigenstates.

Finally, like in the case of a single potential we consider a series of arbitrary potentials.
The left-half of each potential is parabolic while the right-half part is the super-exponential of
the previous section, the results are depicted in figure 9. Each single potential is the same as
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that of the previous section; spacing between wells is 24 Å and their width is 36 Å. Note that
the addition of multiple wells now allows for higher states to exist.

5. Conclusions

In recent years there has been a considerable increase in research activities directed toward
the development of optoelectronic devices based on quantum-well structures. The work and
time spent to develop a new device is, however, very high and in order to better understand the
physical properties of a device it is important that one can simulate the expected performance
numerically. The proposed technique must be such that scientists working with it, without
expert knowledge in numerical computation, must be able to implement computer models,
appropriate to their problem, on their own. Furthermore, they must be tested on a wide range
of structures to ensure that they are well behaved.

To meet this need we have introduced a simple numerical technique based on finite
differences to calculate the eigenstates of arbitrary quantum structures. This is a direct
generalization of the method presented in [11] to higher-order. The main advantages are that it
requires no alternation for different types of potentials—the potential needs not be symmetric,
it can be discontinuous and even singular in terms of delta functions—, it can be extended to
higher order and even to handle two-dimensional problems and can be used for a wide area of
problems originating from quantum-well structures to quantum dots and wires. Even higher
orders (sixth, etc) can be achieved following the above procedure. However, that should be
done with care since the more accurate the method the more points need to be replaced thus
increasing the total number of points in the grid.
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Appendix A. The second order method

The basic steps of the method remain the same for any order. Specifically, for second order
accuracy we wish to approximate equation (1) with a differencing scheme of the form

σ1ψi−1 + σ2ψi + σ3ψi+1 = εψi

where now we only need to replace the coefficients for two irregular points, as shown in
figure A1. For all other points

σ1 = σ3 = −M(xi)

h2
, σ2 = 2M(xi)

h2
+ V (xi).

The only jump conditions needed are for the function and its first two derivatives (same as in
the text). The major difference from the higher-order method is the expansion in the functions,
namely the nominal Taylor expansion would be

ψi = ψ + (xi − x∗)ψx + 1
2 (xi − x∗)ψxx + O(h3),

and the right-hand side of the equation needs no further expansion, i.e. εψi = −M(xi)ψxx +
V (xi)ψi . The resulting systems are then, at xj

σ1 + σ2 + σ3

[
1 +

1

2
(xj+1 − x∗)2 V + − V −

M+

]
= V − (A.1)

14



J. Phys. A: Math. Theor. 42 (2009) 235201 D J Costinett and T P Horikis

x0 x*

(-) region (+) region

xj-10 xj xj+1
xj+2 xN

Figure A1. The uniform grid, the irregular points and the interface of the second order method.

σ1(xj−1 − x∗) + σ2(xj − x∗) + σ3(xj+1 − x∗)
M−

M+
= 0 (A.2)

σ1
1

2
(xj−1 − x∗) + σ2

1

2
(xj − x∗) + σ3

1

2
(xj+1 − x∗)

M−

M+
= −M− (A.3)

and at xj+1

σ1

[
1 +

1

2
(xj − x∗)2 V − − V +

M−

]
+ σ2 + σ3 = V + (A.4)

σ1(xj−1 − x∗)
M+

M− + σ2(xj − x∗) + σ3(xj+1 − x∗) = 0 (A.5)

σ1
1

2
(xj−1 − x∗)

M+

M− + σ2
1

2
(xj − x∗) + σ3

1

2
(xj+1 − x∗) = −M+. (A.6)

For more details see [11].

Appendix B. Boundary conditions for higher order differences

As usual, special care must be given to the end points. High-order methods require an
extrapolation scheme to determine the differencing coefficients at x2 and xN−1. Given the
boundary conditions ψ(x0) = ψ1 = 0 and ψ(xN) = ψN = 0 and using the extrapolation

ψ0 = −ψ4 + 4ψ3 − 6ψ2 + 4ψ1

ψN = −ψN−1 + 4ψN−2 − 6ψN−3 + 4ψN−4

we have (
2M

h2
+ V

)
ψ2 +

(−M

h2

)
ψ3 + (0) ψ4 = εψ2(

2M

h2
+ V

)
ψN−2 +

(−M

h2

)
ψN−3 + (0) ψN−4 = εψN−2

for i = 2 and N − 1, respectively.
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